Lattice dynamics and thermodynamics of bcc iron under pressure: First-principles linear response study

Xianwei Sha and R. E. Cohen
Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington DC 20015, USA

(Received 15 December 2005; revised manuscript received 22 February 2006; published 24 March 2006)

We compute the lattice-dynamical and thermal equation of state properties of ferromagnetic bcc iron using the first-principles linear response linear-muffin-tin-orbital method in the generalized-gradient approximation. The calculated phonon dispersion and phonon density of states, both at ambient and high pressures, shows good agreement with inelastic neutron scattering data. We find the free energy as a function of volume and temperature, including both electronic excitations and phonon contributions, and we have derived various thermodynamic properties at high pressure and temperature. The thermal equation of state at ambient temperature agrees well with diamond-anvil-cell measurements. We have performed detailed investigations on the behavior of various thermal equation of state parameters, such as the bulk modulus K, the thermal expansivity α, the Anderson-Grüneisen parameter δΓ, the Grüneisen ratio γ, and the heat capacity CV as function of temperature and pressure. A detailed comparison has been made with available experimental measurements, as well as results from similar theoretical studies on nonmagnetic bcc tantalum.

DOI: 10.1103/PhysRevB.73.104303

PACS numbers: 05.70.Ce, 63.20.−e, 64.30.+t, 71.20.Be

I. INTRODUCTION

During the past decade, tremendous experimental1–7 and theoretical8–14 efforts have been devoted to investigate various properties of iron, especially for those at high pressure and temperature conditions. Bcc is the ground state structure for iron at ambient conditions. It transforms to fcc structure at elevated temperature (∼1150 K at ambient pressure), and to hcp structure at increased pressure (∼10–16 GPa at room temperature).15,16 Iron also shows very interesting and complex magnetic behavior under different temperature and pressure conditions. It has become a fundamental problem in material science to understand the mechanism of these solid-state phase transitions, the magnetism, and the phase diagram of Fe. The study of iron is also of great geophysical interest, because the Earth’s core consists mainly of this element.

Various lattice dynamical and thermodynamic properties as a function of temperature and pressure may provide important information to understand the phase transitions, phase diagram, and dynamic response of materials. Several first-principle calculations13,14,17 have been performed to study the lattice dynamical properties of bcc iron, generally giving good agreement with experiment.18 Here we concentrate on the thermal equation of state of ferromagnetic bcc iron, using quasiharmonic lattice dynamics with an all-electron method that does not depend on pseudopotentials.

In Sec. II we detailed our methods to perform first-principles calculations, as well as the theoretical techniques to obtain thermal properties. We present our results and related discussions about lattice dynamics in Sec. III, and about the thermal equation of state properties in Sec. IV. We conclude with a summary in Sec. V.

II. THEORETICAL METHODS

For many metals and alloys, the Helmholtz free energy F of a solid has three major contributions19

\[F(V, T) = E_{\text{static}}(V) + F_{\text{el}}(V, T) + F_{\text{vib}}(V, T), \]

with V as the volume, and T as the temperature. \(E_{\text{static}}(V) \) is the energy of a static lattice at absolute zero temperature, \(F_{\text{el}}(V, T) \) is the electronic thermal free energy arising from electronic excitations, and \(F_{\text{vib}}(V, T) \) is the vibrational energy contribution. We assume that the existence of lattice vibrations does not significantly affect the electronic contribution for the thermal properties, and all the terms here are calculated for the ideal lattice. \(E_{\text{static}}(V) \) and \(F_{\text{el}}(V, T) \) can be obtained from first-principles calculations directly. There are several ways to examine the lattice vibrational contribution, including the linear response (LR) lattice dynamics, particle-in-cell (PIC) model, and molecular dynamics. First-principles LR calculations can give important lattice dynamics information, but it is computationally expensive. Additionally, it usually requires use of the quasiharmonic approximation, and anharmonic effects are usually neglected. The PIC model is a mean field approximation to the thermal contribution.20–23 It includes on-site anharmonicity and usually requires less computer power than \textit{ab initio} lattice dynamics calculations. However, it neglects the interatomic correlations and diffusion. The accuracy and reliability of molecular dynamics methods strongly depends on the quality and versatility of the interatomic potential. It is computationally expensive to study the thermal equation of state properties rigorously from first-principles molecular dynamics calculations directly, and one obtains only the classical contributions, so that properties at room temperature and below are not reliable. In the present paper, we use first-principles full potential linear-muffin-tin-orbital (LMTO) calculations to evaluate \(E_{\text{static}}(V) \) and \(F_{\text{el}}(V, T) \) and linear response LMTO calculations for the lattice vibrational properties.

Since bcc Fe is ferromagnetic, magnetic fluctuations at high temperatures contribute to the Helmholtz free energies.
We are currently performing Monte Carlo simulations based on an effective Hamiltonian to examine the contribution from magnetic fluctuations in bcc Fe, and the results will be reported in the future.

A. Static lattice energy

We use multi-\k space sets in the LMTO method.24,25 Space is divided into the nonoverlapping muffin-tin (MT) spheres surrounding each individual atom and the remaining interstitial region. Nonoverlapping muffin-tin spheres with radii of 2.18 bohr have been used in all the calculations. The self-consistent calculations are performed using 3\k-spd-LMTO basis set with one-center expansions performed inside the MT spheres up to \lmax=6. In the interstitial region the basis functions are expanded in plane waves with the energy up to the cutoff corresponding to 78, 140, and 224 plane waves per s, p, and d orbital, respectively. The induced charge densities, the screened potentials and the envelope energy up to the cutoff corresponding to 78, 140, and 224 the basis functions are expanded in plane waves with the correlation energy.

\[
S_{\text{el}}(V,T) = -2k_B \sum_i f_i \ln f_i + (1 - f_i) \ln(1 - f_i) \quad \text{and} \quad f_i = \frac{1}{1 + \exp \left[\frac{e_i - \mu(T)}{k_B T} \right]}.
\]

B. Electronic contribution

The electronic free energy can be written as

\[
F_{\text{el}}(V,T) = E_{\text{el}}(V,T) - TS_{\text{el}}(V,T).
\]

The electronic entropy is given

\[
S_{\text{el}}(V,T) = -2k_B \sum_i f_i \ln f_i + (1 - f_i) \ln(1 - f_i),
\]

where

\[
\sum_i f_i = N_d,
\]

where \(N_d\) is the total number of the electrons in the systems.

The current method to calculate the electronic free energy \(F_{\text{el}}\) and electronic entropy \(S_{\text{el}}\) assumes that the eigenvalues are temperature independent for given lattice and nuclear positions; only the occupation numbers change with the temperature through the Fermi-Dirac distribution. Wasserman et al. found that the electronic entropies of hcp Fe calculated from tight-binding total energy calculations based on static eigenvalues agree within 1% with the values from self-consistent high temperature linear augmented plane wave (LAPW) method over the whole temperature (6000–9000 K) and volume (40–90 bohr\(^3\)/atom) ranges, which clearly indicates that the eigenvalue approximation is well justified for transition metals.

C. Vibrational contribution

The linear response method based on density functional theory (DFT) and the density functional perturbation theory (DFPT) has already been successfully applied to calculate the lattice vibrational contribution to the free energy and other thermodynamic properties of many materials.28–31 In the framework of the linear response LMTO method, the dynamical matrix and the phonon linewidths are determined as a function of wave vector for a set of irreducible \(q\) points at the \(8 \times 8 \times 8\) reciprocal lattice grid (29 irreducible \(q\) points) for the bcc structure. The perturbative approach is employed for calculating the self-consistent change in the potential.32–33 Careful tests have been done against \(k\) and \(q\) point grids and many other parameters to make sure all the results are well converged. The self-consistent calculation is terminated when the total energy change is less than \(10^{-9}\) Ry in the full potential LMTO, and when the change in the
The vibrational contribution to the free energy is calculated by combination of the linear response and the quasiharmonic approximations. Once the phonon dispersion relation and/or phonon density of state is obtained from the linear response lattice dynamics calculations, the phonon internal energy U_{vib} and phonon free energy F_{vib} are computed from:

$$U_{\text{vib}}(V,T) = \sum_{q,i} \hbar \omega_i(q,V,T) \left(\frac{1}{2} + \frac{\hbar \omega_i}{k_B T} - \frac{1}{e^{\hbar \omega_i/k_B T} - 1} \right).$$

Within the quasiharmonic approximation for insulators, at a given q vector, the frequency ω_i is solely a function of volume and temperature independent. Although ω_i does depend on temperature for transition metals because of the electron-phonon coupling, the normal quasiharmonic treatment will not cause any serious problems because the thermal electronic excitation is usually small. In the present paper, we assume that the phonon frequencies at a fixed volume are independent of the temperature.

III. LATTICE DYNAMICS

We calculate lattice dynamical properties of ferromagnetic bcc Fe at six different volumes, 65, 75, 75.6, 85, and 90 bohr3/atom. For bcc Fe at volumes significantly beyond the above regimes, some phonon branches will soften and become unstable, consistent with earlier calculations. In Fig. 1 we show our calculated phonon dispersion curves (solid lines) of ferromagnetic bcc iron at the experimental equilibrium volume (79.6 bohr3/atom) at ambient conditions. For both the TA and LA acoustical branches along several high-symmetry directions in the Brillouin zone, the theoretically determined phonon frequencies agree well with experimental data from recent inelastic neutron scattering measurements at 300 K (dots). There are no phonon anomalies. Dal Corso and Gironcoli performed first-principles linear response calculations on magnetic bcc Fe using an ultrasoft pseudopotential; their computed phonon dispersion curves using PBE GGA and LDA approximations are shown as the dashed and dotted lines in Fig. 1. Using linear response and the same PBE GGA approximations for exchange and correlation functional, their ultrasoft pseudopotential and our full potential LMTO calculations are in excellent agreement at ambient conditions. Both also agree well with the experiment. On the other hand, the symmetrical discrepancies between the LDA pseudopotential cal-

FIG. 2. Calculated phonon dispersion curves for ferromagnetic bcc Fe at two compressed volumes, $V=75$ bohr3/atom ($P=10$ GPa, solid lines) and $V=70$ bohr3/atom ($P=25$ GPa, dotted lines), in comparison to the neutron inelastic scattering data at 9.8 GPa (dots, Ref. 18).

FIG. 3. Calculated phonon density of states (DOS, lines) of ferromagnetic bcc Fe at five different volumes, 70, 75, 79.6, 85, and 90 bohr3/atom, in comparison to the neutron inelastic scattering data at 0 and 9.8 GPa (dots, Ref. 18).

FIG. 4. Calculated thermal equation of state (lines) at temperatures between 0 and 2250 K. Experimental equation of state, measured in a diamond-anvil cell at room temperature, is shown as dots (Ref. 50).

$$F_{\text{vib}}(V,T) = k_B T \sum_{q,i} \ln \left[2 \sinh \frac{\hbar \omega_i(q,V,T) k_B T}{2k_B T} \right].$$

With the quasiharmonic approximation, at a given q vector, the frequency ω_i is solely a function of volume and temperature independent. Although ω_i does depend on temperature for transition metals because of the electron-phonon coupling, the normal quasiharmonic treatment will not cause any serious problems because the thermal electronic excitation is usually small. In the present paper, we assume that the phonon frequencies ω_i at a fixed volume are independent of the temperature.
calculations and the experiment suggests that the LDA approximation not only fails to give the correct ground state structure for Fe, but also fails to accurately describe the phonons. The calculated phonon dispersion at 75 bohr\(^3\)/atom (solid lines) and at 70 bohr\(^3\)/atom (dotted lines). The calculated phonon frequencies show a significant increase of 6\%–15\% when the volume decreases from 79.6 to 75.0 bohr\(^3\)/atom. This is consistent with the inelastic neutron scattering experiment, where all measured phonon frequencies increase 5\%–10\% for a volume reduction corresponding to 5\%. With further volume compression from 75 to 70 bohr\(^3\)/atom, most phonon frequencies show another 6\%–14\% increase, except for \(q\) vectors close to the \(H\) point in the BZ boundary, where the increase is much less significant, with only a 1\% increase at \(H\) point. With increase of pressure, the phonon dispersion shows more complex and anomalous behavior near the \(H\) point. At \(V=75\) bohr\(^3\)/atom, a noticeable dip of the longitudinal mode near [3/4, 0, 0] appears. The dip becomes more significant at \(V=70\) bohr\(^3\)/atom, with an additional pronounced dip of both the longitudinal and transverse branches for \(q\) vector close to [3/4, 3/4, 3/4].

Recent developments in high pressure and inelastic neutron scattering techniques by Klotz et al. have made it possible to measure the lattice vibrational properties under high pressure accurately, and their measured phonon dispersion data for bcc Fe at 9.8 GPa (Ref. 18) are shown as dots in Fig. 2. According to the thermal equation of state (see the following section), the equilibrium volume of bcc Fe at 9.8 GPa is close to 75 bohr\(^3\)/atom, thus we can compare our calculated phonon dispersions at 75 bohr\(^3\)/atom with the experiment directly. As seen in Fig. 2, the experiment and the calculations agree well at high pressure, often within a few percent over the whole BZ.

bcc iron transforms under pressure to the hcp phase at around 10–16 GPa. Lattice dynamics of bcc Fe under pressure can provide important information in understanding the transition mechanism. According to the well-known Burger mechanism, the bcc to hcp structural transformation can be achieved by two simultaneous distortions: (1) opposite displacements of the bcc (110) planes in the [110] directions, which corresponds to the \(TA1(N)\) phonon mode at the bcc BZ boundary;\(^{30,41}\) (2) shear deformation in the [001] direction while keeping the volume and the bcc (110) planes unchanged. If the phase transition is dominated by the Burger mechanism, the frequencies of \(T1(N)\) phonon mode should show anomalous behavior close to the transition. For the bcc-hcp transition of Ba, first-principles calculations clearly indicate a substantial softening of this \(T1\) \(N\)-point phonon mode when approaching the transition pressure (~4 GPa).\(^{42}\) Such dynamical precursor effects of the lattice instability have also been found in group-IV transition metals such as Ti, Zr, and Hf.\(^{43–45}\) However, the bcc-hcp transition in Fe seems to be quite different. Klotz and Barden measured the phonon dispersion at 0 and 9.8 GPa by inelastic neutron scattering, and demonstrated that such effects are definitely absent.\(^{18}\) As shown in Figs. 1 and 2, instead of softening, compared to the ambient pressure value, the \(TA1(N)\) phonon frequency increases ~8\% at volume \(V=75\) bohr\(^3\)/atom (\(P \approx 10\) GPa), and ~15\% at \(V=70\) bohr\(^3\)/atom (\(P \approx 25\) GPa). For pressures above the bcc to hcp transition pressure, ferromagnetic bcc phase is still dynamically stable, and the dynamic precursor effects according to Burgers mechanism are still absent. The bcc phase eventually becomes dynamically unstable at a much higher pressure (\(P \approx 180\) GPa).\(^{13}\)

The calculated phonon density of states (DOS) for ferromagnetic bcc Fe, at five different volumes, \(V=70, 75, 79.6, 85,\) and 90 bohr\(^3\)/atom, are plotted in Fig. 3. With the increase of pressure (decrease of the volume according to the
LATTICE DYNAMICS AND THERMODYNAMICS OF...

FIG. 7. Calculated Debye temperature \(\Theta_D(T) \) as a function of temperature at several volumes. \(\Theta_D(T) \) shows a rapid increase with pressure (decrease of volume). With increase of temperature, \(\Theta_D(T) \) drops rapidly at low temperature, but shows little temperature dependence when \(T > 250 \) K. Neutron scattering experimental \(\Theta_D(T) \) at 0 and 9.8 GPa are shown as filled circles and open diamonds, respectively (from Ref. 18).

IV. THERMAL EQUATION OF STATE

The Helmholtz free energies can be evaluated at different volumes and temperatures from the calculated electronic and phonon density of state. The resulting free energies can be evaluated at different volumes and temperatures from the calculated electronic and phonon density of state. The resulting free energies can be further treated in several different ways, as shown in an earlier work on Ta.46

First, the free energies for each temperature \(T \) can be fit to the Vinet equation of state:47–49

\[
F(V, T) = F_0(T) + \frac{9K_0(T)V_0(T)}{\xi^2} \times \{1 + [\xi(1-x) - 1]\exp[\xi(1-x)]\},
\]

where \(F_0(T) \) and \(V_0(T) \) are the zero pressure equilibrium energy and volume, \(x=(V/V_0)^{1/3} \), \(K_0(T) \) is the bulk modulus, \(\xi=\frac{3}{2}(K_0'-1) \) and \(K_0'=\frac{\beta K(T)}{\rho_0} \). The subscript 0 throughout represents the standard state \(P=0 \) GPa.

TABLE I. Equation-of-state parameters determined by fitting a Vinet equation to the computed binding energy curves. LAPW results are from Ref. 35, and experimental data are from Ref. 50.

<table>
<thead>
<tr>
<th>(V_0) (bohr(^3))</th>
<th>(K_0) (GPa)</th>
<th>(K_0')</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMTO-GGA</td>
<td>75.36</td>
<td>178</td>
</tr>
<tr>
<td>LAPW-GGA</td>
<td>76.84</td>
<td>189</td>
</tr>
<tr>
<td>LAPW-LSDA</td>
<td>70.73</td>
<td>245</td>
</tr>
<tr>
<td>Expt.</td>
<td>79.51</td>
<td>172</td>
</tr>
</tbody>
</table>

FIG. 8. Global fit of thermal free energies to the calculated first principles data at several different volumes and temperatures. At both low (a) and high (b) temperature regimes, the fitted (lines) thermal energies agrees well with the computed data (symbols); and the residuals at high temperatures (c) are very small.

Pressure can be obtained analytically as

\[
P(V, T) = \left(\frac{3K_0(T)(1-x)}{\xi^2} \right) \exp[\xi(1-x)].
\]

In Fig. 4 we show the calculated thermal equation of state of bcc Fe at temperatures between 0 and 2250 K. The calculated thermal equation of state at 250 K shows good agreement with diamond-anvil-cell measurements (dots) at room temperature.50 While the bcc phase is dynamically stable over the whole pressure and temperature ranges shown here, it is only thermodynamically stable over a small region. Ferromagnetic bcc iron transforms to the fcc phase at \(T = 1150 \) K, and to the hcp phase at \(P \approx 10-16 \) GPa. There are several reasons to include results beyond this thermodynamically stable field. bcc phase is metastable in these regions, which might be approached in some shock experiment. The bcc phase becomes stable just before melting at zero pressure, and could become entropically stabilized again at very
high temperatures and pressures, although this seems not to happen in pure iron. The computed lattice dynamics and thermal equation of state of bcc phases in these regions may provide crucial information in understanding the phase diagram at extreme conditions.

We show the Vinet equation of state fitting parameters, $F_0(T)$, $V_0(T)$, $K_0(T)$, and $K_0'(T)$ as functions of temperature in Fig. 5 and Table I. Although both LAPW (Ref. 35) and LMTO calculations underestimate the experimental equilibrium volume, GGA shows a dramatic improvement over the LSDA results.

The thermal pressure can be obtained from the pressure difference between isotherms. The thermal pressures as function of volume and temperature are shown in Fig. 6. At low temperature, the thermal pressures are small, and show little volume dependence. At elevated temperature, the magnitude of thermal pressure increase significantly, and their values first show a decrease with increase of pressure, and then show a strong increase for volumes smaller than 70 bohr3/atom. This is different from bcc Ta, where the volume dependence of the thermal pressure is weak up to 80% compression for a large temperature range (947–9947 K). The different thermal pressure behavior of bcc Fe might be partly due to the pressure dependence of the magnetic moment.

At a given volume, the thermal pressure shows a linear increase with temperature. The pressure change at a given volume is

$$P(V,T) - P(V,T_0) = \int_{T_0}^{T} \alpha K_T dT,$$ \hfill (10)

where α is the thermal expansion coefficient and K_T is the bulk modulus. For many materials, αK_T is constant in the classical regime. For bcc Ta, for almost all the volumes, the thermal pressure has a slope of ~ 0.00442 GPa/K. However, the slopes for bcc Fe show a strong volume dependence, which might be attributed to its different magnetic moments with volumes.

At low temperature, the Helmholtz free energy in the Debye approximation is

$$F = E_{\text{static}} + RT \left[\frac{9}{8} \left(\frac{\theta_D}{T} \right)^3 + 3 \ln(1 - e^{-\theta_D/T}) - D\left(\frac{\theta_D}{T} \right) \right].$$ \hfill (11)

Debye function $D(\theta_D/T)$ is

$$D\left(\frac{\theta_D}{T} \right) = 3 \left(\frac{T}{\theta_D} \right)^3 \int_0^{\theta_D/T} \frac{z^3 dz}{e^z - 1}.$$ \hfill (12)

In the classical regime, for temperatures above Debye temperature θ_D, an accurate high-temperature global equation of state can be formed from the $T=0$ K Vinet isotherm plus a volume-dependent thermal free energy F_{th}.

![Fig. 9. The thermal expansion coefficient of bcc Fe as functions of temperature [(a) and (b) for pressures from 0 to 40 GPa with 10 GPa interval] and pressure for temperatures from 500 to 1500 K with 100 K interval (c). Experimental data (dots) are from Refs. 51 and 52.

The term $T \ln T$ is necessary to give the proper classical behavior at low temperature. A global fit to the calculated thermal Helmholtz free energies can be performed to determine the parameters A_{ij}. The above thermal free energy functional gives a good description of various thermal equation of state parameters for bcc Ta at high temperatures.

We calculated the Debye temperatures $\theta_D(T)$ at 0 K by numerical integration of the low-frequency part of the phonon density of state, and solved Eq. (11) to obtain $\theta_D(T)$ at other temperatures. In Fig. 7 we show the calculated $\theta_D(T)$ as a function of temperature at several different volumes. With increase of pressure (decrease of volume), $\theta_D(T)$ shows a strong increase. At low temperature, $\theta_D(T)$ drops with in-
crease of T. However, with further increase ($T>250$ K), $\theta_D(T)$ shows almost no temperature dependence. All these are consistent with recent neutron scattering experiments.18 The calculated $\theta_D(T)$, at both ambient pressure ($V = 79.6$ bohr3/atom) and 9.8 GPa ($V = 75$ bohr3/atom), usually agrees within 10–15 K (≈2%–3%) with the measured data.

The calculated and fitted thermal free energies as function of temperature and volume are compared in Fig. 8. At both low and high temperature regimes, the fit gives good agreement with the calculated data, with rms deviations of ≈0.2 mRy. For the high temperature fitting, the residuals [Fig. 8(c)] are small over the whole temperature range for all the volumes studied, with values less than 0.6 mRy. This is different from bcc Ta, where the residuals are much larger due to the electronic topological transition.46

The various thermal equation of state properties can be derived analytically from the Helmholtz free energy. The thermal expansion coefficient α is

$$\alpha = \frac{3R\gamma_D}{K_TV} \left[4D\left(\frac{\theta}{T}\right) - \frac{3(\theta/T)}{e^{\theta/T} - 1} \right].$$

(15)

At low temperatures, the Debye expression for α is19

$$\alpha = \frac{3R\gamma_D}{K_TV} \left[4D\left(\frac{\theta}{T}\right) - \frac{3(\theta/T)}{e^{\theta/T} - 1} \right].$$

The thermal expansion coefficient of bcc Fe agrees well with experiment at low temperatures [Fig. 9(a)]. At high temperature, α shows a linear increase under several different pressures [Fig. 9(b)], as predicted by the quasiharmonic approximation at the high T limit.19 Thermal expansivity is a
very sensitive parameter, and the discrepancy between the calculated α at ambient pressure and high temperature with the experiment51,52 might be attributed to several factors: the errors in the first-principles calculations, anharmonic effects, and most likely magnetic fluctuations. It should be noted that the calculated α shows good agreement with the experiment even at high temperature when applying similar theoretical approaches to nonmagnetic bcc vanadium.

The calculated γ shows a rapid drop with increasing pressure P. The relationship between γ and pressure are characterized by the Anderson-Grüneisen parameter γ.

For bcc Ta, the average γ shows a strong decrease with pressure. For many materials, the parameter γ can be fitted to a form as a function of volume53

$$\gamma(T) = \frac{1}{\alpha K_T} \left(\frac{\partial K_T}{\partial T} \right)_{P}$$

The calculated γ of bcc Fe shows quite complex behavior as a function of pressure and temperature (Fig. 10). At a given pressure, γ first decreases with temperature, and then shows a slight increase, similar to the behavior in bcc Ta.46 At all temperatures, γ shows a strong decrease with pressure. For many materials, the parameter γ can be fitted to a form as a function of volume33

$$\gamma(T) = \gamma(\eta = 1) \times \eta^s,$$

FIG. 11. The Grüneisen ratio γ as a function of (a) temperature and (b) pressure. Experimental data (dots) are from Ref. 55.

FIG. 12. Variation of the parameter q as a function of (a) temperature and (b) pressure.

FIG. 13. Heat capacity at constant volume. Calculated C_V agrees with experiment (dots, Ref. 51) at low temperature (a). At high temperature, C_V increases significantly due to electronic thermal excitation (b), but shows little pressure dependence (c).

The calculated thermal expansion coefficient shows a rapid drop with increasing pressure [Fig. 9(c)]. The relationship between α and pressure are characterized by the Anderson-Grüneisen parameter δ_T.

$$\delta_T = \frac{1}{\alpha K_T} \left(\frac{\partial K_T}{\partial T} \right)_{P}$$

where $\eta = V/V_0(T_0)$. For bcc Ta, the average δ_T shows $\delta_T(\eta) = 4.56 \times \eta^{1.29}$ for temperature $0 - 6000$ K.46 and $\delta_T(\eta)$
\[CV = 3R \left[4D \frac{\theta}{T} - \frac{3(\theta/T)}{e^{\theta/T} - 1} \right] \] (20)

and is in good agreement with experiment [Fig. 13(a)]. At high temperatures [Figs. 13(b) and 13(c)], \(CV \) is pressure independent at a given temperature. When the temperature is less than \(\sim 1200 \, \text{K} \), \(CV \) only shows slight increase with temperature. At higher temperature, the increase of \(CV \) becomes more noticeable. This increase comes mainly from the electronic excitation contribution.

V. CONCLUSIONS

In summary, we have performed detailed first-principles linear response calculations to study the lattice dynamics and thermal equation of state properties of ferromagnetic bcc Fe. The calculated phonon dispersion and phonon density of state, both at ambient and high pressures, agree well with inelastic neutron scattering experiment. No dynamic precursor effects of lattice instability exist for the bcc-hcp phase transition. The calculated free energies have been treated by three different forms: Vinet equation of state, simple linear thermal pressure and a global fit to the thermal Helmholtz free energy. The calculated thermal equation of state agrees well with experiment. The thermal expansion coefficient agrees well with the experiment at low temperature. The difference of high temperature might be attributed to the influence of magnetic fluctuations. The calculated Grüneisen ratio and heat capacity \(CV \) show little pressure dependence. Thermal electronic excitations contribute significantly to the temperature dependence of \(CV \) at high temperature.

ACKNOWLEDGMENTS

Much thanks to S. Y. Savrasov for kind agreement to use his LMTO codes and many helpful discussions. This work was supported by DOE ASCI/ASAP Subcontract No. B341492 to Caltech DOE w-7405-ENG-48. Computations were performed on the Opteron Cluster at the Geophysical Laboratory, supported by the above DOE grant.